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Abstract. We present a study of the multi-canonical Monte Carlo method which constructs 
and exploits Monte Carlo procedures that sample across an extended space of mxrostates. 
We examine the strategies by which the sampling distribution can be constructed, showing, 
in panicular. that a good approximation to this disoibuion may be generated ac i en t ly  by 
exploiting measurements of the transition rate between manostat?, in simulations launched 
from sub-dominant mcrostatea. We explore the utility of the method in the measurement of 
absolute free energies. and how it compares with traditional methods based on path integration. 
We present new results revealing the behaviour of the magnetization distribution of a critical 
finite-sized magnet, for magnetization values extending from the scaling region all the way to 
saturation. 

1. Introduction 

The Monte Carlo (MC) method is widely appreciated as an invaluable aid in the exploration of 
statistical physics. In its most commonly practised form (Boltzmann importance sampling) 
it allows the microstates of. the model system of interest to be visited with the canonical 
Boltzmann probabilities, and canonical expectation values to be determined as simple 
averages over the sampled states [ 1,2]. 

The limitations of the method, in its traditional form. are  also^ widely recognized. 
First, its very faithfulness to the Boltzmann distribution means that it is as susceptible 
to the problems of metastability as a laboratory experiment: the relative probabilities (the 
relative free energies) of macroscopically different phases cannot be determined directly 
because of the intrinsically  low probability of paths connecting them. Second, though 
guaranteed to sample with the Boltzmann probabilities, the procedure does not prescribe 
these probabilities: the normalization constant (the partition function, and hence the absolute 
free energy) for the probabilities is neither required for, nor readily determined by, the 
standard procedure [Z]. 

The idea of extended sampling. by which we mean sampling from distributions other 
than the canonical Boltzmann form, also has a long history [3]. The seminal contributions 
of Torrie and Valleau [4] have recently evolved into the multi-canonical ensemble method 
of Berg ind Neuhaus [5,6], and the related expanded ensemble method (or ‘simulated 
tempering’) of Lyubartsev et al [7] and Marinari and Parisi 181. 

Our primary concern here is with the multi-canonical Monte Carlo (MCMC) method. 
In this method, weights are associated with a selected range of values of a nominated 
macroscopic variable, frequently, but not invariably, the energy; the MC algorithm is then 
designed so that macrostates (the ‘states’ of the chosen macroscopic variable) are visited with 
probabilities that are modified, with respect to the canonical forms, to an extent controlled 
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by the chosen weights. The ideal weights secure a sampling distribution that is flat over an 
extended range of macrostates. 

It is convenient (though not necessarily always wise) to divide the associated issues into 
two groups: how the sampling distribution should be constructed and the ways in which it 
can be utilized. 

The construction process poses the core problem, which has formed the principal 
obstacle [2,9] to speedier and wider implementation of the ideas of Tome and Valleau 
[4]. In most MCMC studies (surveyed recently by Berg [IO]) the sampling distribution has 
been constructed by largely ad hoc iterative procedures [11,12] which use estimates of 
the ‘current’ sampling distribution (that associated with a particular set of weights), based 
on observations of the frequency with which macrostates are visited, to refine the choice 
of weights, which are then used to define the next sampling distribution. Typically the 
procedure is bootstrapped by the guess of an initial set of weights, based, for example, 
on an extrapolation of results obtained on a smaller system 1.51. The studies reported here 
(section 2) explore and develop these procedures. We set the the choice of estimator 
of the current sampling distribution within a Bayesian framework, rationalizing earlier 
prescriptions [11.12] . We show th2 the information provided by observation of the 
frequency with which transitions are made between macrostates provides a potentially more 
efficient route to an appropriate set of weights than measurements of the frequencies of 
macrostate visits. We also make a little progress (again within a Bayesian framework) 
towards a weight-update algorithm which reflects confidence levels in the existing weights, 
and is therefore more robust against sampling error. 

The MCMC method has been utilized in a variety of ways, which we may divide broadly 
into three categories. First, the method can be used to facilitate the equilibration of 
two phases, by use of a sampling distribution that is extended (‘multi-canonical’) in an 
appropriate order parameter. In this way one may locate the line of phase coexistence, 
and (in effect), measure the difference between the free energies of the two phases. 
Applications of this kind have, to date, involved extended sampling in the energy (at a 
thermally driven first-order transition in a lattice model) [5], and the density (at the liquid- 
vapour transition) in a Lennard-Jones fluid [ 131. Second, in conjunction with histogram- 
reweighting techniques [14,15], extended sampling in the energy allows one to determine 
equilibrium properties-including the free energy-at all temperatures. Applications here 
have included studies of spin glasses 111,161 and tertiary protein structure [17]. Thirdly, 
one may use extended sampling techniques to access the infomation inherent in the 
probabilities of intrinsically unlikely macrostates. The principal application here has been 
the measurement of interfacial tension (through extended sampling of the magnetization) 
using the probabilities of inhomogeneous (two-phase) macrostates [18]. 

The applications presented here contribute to the second and third strands of this 
programme. We examine the effectiveness of extended energy sampling in determining 
absolute free-energy values, making an explicit comparison with the MC integration methods 
traditionally used for such calculations [Z, 91. We also use extended sampling to explore the 
behaviour of the distribution of the magnetization in a critical magnet beyond the region 
accessed in conventional Boltzmann sampling [19,20], right through to saturation. D e  
behaviour in this regime has been the subject of some recent speculation [21,22], on which 
the present results cast some light. 

G R Smith and A D Bruce 

Our conclusions are summarized in section 4. 
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2. Constructing the sampling distribution 

2.1. General formulation 

We consider a system describable by N local coordinates, which we shall take to have a 
discrete spectrum. f i e  specific system we shall consider here will be an king model on a 
lattice of N sites. However, the methods we shall discuss are widely applicable; we shall 
report elsewhere on their application to the study of a structural phase transition 1231. 

We envisage that the system has microstates, labelled r ,  with energies E,, and associated 
canonical probabilities (at inverse temperature p )  

e-BEr 
p ;  = __ 

ZYB) 
where Zc(,9)is the canonical partition function 

0.1) 

and the sum extends over the complete, finite, set of microstates, r = 1 , Z . .  . S I T ,  where, for 
the king model, C2, = 2N. Algorithms which sample with the canonical probabilities (2.1) 
will visit macrostates identified by the values 0; (i = 1,2, . . . N,) of a chosen macroscopic 
observable 0 with probabilities 

(2.3) 

where 7 is a generalized free-energy function. 
(B = E). 

and 

In particular, for energy macrostates 

( 2 . 4 ~ )  ,9F; = BEi - In n(E;) 

where SI is the density-of-states function. 
For succinctness we shall frequently use a vector notation for macrostate space. Thus, 

for example, the vector p' will signify the set of canonical probabilities pf. i = 1,2, . . . N,, 
defined in equation (2.3). 

We shall be concerned with algorithms which sample from the extended distribution 
e-BEr+III 

a i 3 3  71) 
p m  = - r e i  (2.5) 

which accordingly visit macrostates Oi with probabilities 

where Z(i3,q) is fixed by the normalization condition. 

to an ideal set q' with the property 
Our aim is to construct, and then to utilize, a set of weights q VI ,  72. . . . approximating 

(2.7) 
where r$ is an arbitrary constant, which we shall fix by the convention that mini(g) = 0. 
The ideal set of weights (uniquely defined, given this convention) thus secures a sampling 
distribution that is flat over the space of macrostates. We shall refer to such aflar distribution 

llf = 625 + ll: 
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as multi-canonical, whether the macrostates are those of the energy or not. Most work to 
date has focused on energy macrostates, and the weights have accordingly been parametrized 
by effective temperatures; we shall keep the notation more general. 

In principle, the task of constructing approximations to the ideal multi-canonical set is 
not independent of the issues involved in their utilization: the 'construction' process involves 
gathering much of the information needed in the 'utilization' process; and the accuracy 
with which the multi-canonical weights need to'be determined can only be prescribed by 
consideration of their use. We shall, nevertheless, separate the tasks in this way. 

The construction process clearly has to be iterative in character: it requires a procedure 
(possibly bootstrapped by a guess at some initial set of weights q(')) generating a sequence 
q"), q(3). . . converging to the ideal set q*. The general structure of such a procedure is 
clear. We gather information ('data', D(") say) by MC sampling from the distribution defined 
by the nth set of wei hts with microstate probabilities p p )  = pr(q(")) ,  visiting macrostates 
with probabilities p$ pi(q(")), which define the macrostate probability vectorp("). This 
information is then used to generate the (n + 1)th set of weights. It is helpful to consider 
what is involved within a Bayesian framework [24]. In principle, the (n + 1)th iterate q("+') 
should be identified as an estimator of q* based on the probability distribution for this 
ideal set, P(q*ID('), D", . . . D'")), constructed using all the data D(l), D(", . . . D(") 
gathered up to the nth stage of the procedure. In practice the analytical difficulties in 
handling the evolution of such a distribution, with n, have led us to implement a rather less 
ambitious procedure, split into two parts. First, the data gathered at the nth stage (alone) 
is used to infer a probability distribution for the set p(") (the true underlying sampling 
probabilities associated with the nth set of weishts). According to Bayes' theorem (with no 
attempt to fold in the prior information implicit in data from earlier stages of the procedure) 
this distribution is given, to within a normalization constant, by the likelihood function 
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P(D'"'lp'"'): 

P(p'"'lD("') c( P(D("'lp'"'). (2.8) 

This distribution is then used to construct an estimator, j$'), for the sampling probability 
p("). and (generally) associated uncertainties. These estimates constitute what we will call 
processed dura, D("), which define the input to the second part of the procedure. In this 
second part, the processed data is used to update the distribution for q* in accord with 
Bayes' theorem: 

(2.9) P(q"lD'1'. . . D(")) 0: P(?]*]D(1). . . D'""')P(D("'lq'). 

We proceed to explore this structure, giving particular attention to three key issues: 
(i) The choice of the data D") to be gathered in the sampling stage. 
(ii) The choice of estimator of the sampling probabilities p(") (given the distribution 

(iii) The choice of algorithm for weight updating (given the processed data) providing 
(2.8)) yielding the processed data D"). 

a practical implementation of (2.9). 

2.2. Initial explorations: the choice of probability estimator 

To begin with let us suppose that the data D(") gathered in the course of MC sampling 
from the distribution p(") consists simply of a histogram C(") of the counts of visits to 
each mamostate, totalling Nc counts in all, say. We shall refer to this strategy as the visited 
states (vs) method. It is, to our knowledge, the basis of all multi-canonical studies to 
date. If the interval between recorded samplings is sufficiently long in comparison with the 
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correlation time of the underlying Markov process, the likelihood function of the sampled 
data P(D("'Ip("') will be multinomial, so that, appealing to equation (2.8). 

where N is determined by the requirement that P@(")ID(")) is corfectly normalized. 
We shall also make the simplest choice as regards the algorithm for weight updating. 

We suppose that the processed data Den) consists simply of the estimate 8'") we make of p") 
based on the distribution (2.10) (which we shall consider in a moment), together, formally, 
with the nth weight vector Q(") . That is, 

(2.11) D(") + $"', +n) , 

We choose, moreover, to make no attempt to fold in prior information gleaned from earlier 
stages in the process. Then equation (2.9) reduces to the form 

p(q*ID'"') P(Q*Ijj'"', @)) = a(q* - q"f") (2.12) 

(2.13) 

where k is a constant (to be fixed by appeal to the convention defined following 
equation (2.7)). 

The simplest choice is the maximum 
likelihood esfimazor (MLE) which locates the maximum in the likelihood function (2.10). 
The components of this estimator are readily identified as 

Now consider the choice of estimator $'). 

Cp' 
jj?' = - [vs; MLEI (2.14~) 

NC 

which. in conjunction with (2.13), implies the update scheme 

(2.14b) 

with the understanding that $' = 0 
The deficiencies of this scheme are clear: it fails where Cy' = 0, which happens 

extremely frequently in the early iterations since there are many macrostates that the 
Boltzmann sampling algorithm does not visit. While there are heurishc ways of avoiding 
this problem [12,25-27], it can be skirted more systematically with a revised choice of 
estimator. Specifically, the mean value estimator (MVE), identified as the mean of the 
likelihood (2.10), has elements ~~ 

(n+U - ( n )  - In 
+ k vi - v; 

which implies the revised update scheme 

qp"' = qp' - ]n[C,'") + 11 + k .  

( 2 . 1 5 ~ )  

(2.15b) 

In the (troublesome) case Cy' = 0 this gives the same updating scheme as was introduced, 
somewhat arbitrarily, by Lee [12]. Its essential effect is to decrease the sampling probability 
(at level n + 1) in the region well sampled at level n and thence to increase it (uniformly) 
in the region not sampled at level n. 
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c(n) :aa - ." ;aa laa 
120.0 

Figure 1. Behaviour of the visited states algorithm with mem value estimator and no prior on 
weighls (equation (2.156)) for a 1~ Ising model with ,9 = 0.55, and N = 16'. ?he upper figure 
shows the histognms CC") of visits to energy macrostates (for n, = 300) at stages n = 1,2.3; 
the lower figure shows the resulting set of weights qCn' for n = 2,3,4.. .20. The inset shows 
detail in a restricted range of energie- revealing persistent fluctuations due to the effects of 
sampling error on the algorithm (2.15b). 

Figure 1 shows this simple updating scheme in action. Here (and elsewhere in this 
paper) we have used the 2D Ising model as a testbed. We choose a model of unit coupling 
constant with the energy 

E = - c o j o j  (2.16) 
(U)  

where the sum extends over the 2 N  nearest-neighbour bonds in a 2D lattice, and the spins 
assume values il. In this case we have considered the energy macrostates of an N = 16' 
model at inverse temperature ,3 = 0.55, extending from the ground state E = -2N 
up to E = 0. The total number of recorded macrostate visits N, is chosen such that 
n, 5 NJN,,, = 300, where N, = N / 2  is the number of energy macrostates in the range 
investigated. 
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The upper part of figure 1 shows the histogram 0“) of macrostate visits for sampling 
stages n = 1,2,3; the lower figure shows the weights q(n) for n = 2.3 ,4  inferred from 
this data (and from the following 17 iterations) using (2.15b). The general character of 
the scheme is evident: on each iteration the sampled region widens slightly, becoming 
roughly multi-canonical (flat) over the part that was sampled before, and extending a little 
further into the wings. The (n +~I) th  histogram tends to have large fluctuations in the 
states that were at the edge of the nth, because the poor statistics at the edges of C(”) 
tend to produce weights q(nt’) that are inaccurate here. These fluctuations get smoothed 
away on subsequent iterations. It is clear that the scheme consistently underestimates the 
weights to be assigned to regions which have not been sampled. This is to be expected 
unless the distribution over macrostates is bimodal, the weight in the unsampled wings of 
the distribution p v )  will typically be many orders of magnitude smaller than that implied 
by the one count’s worth credited by (2.15~). Though less than ideal, it is certainly better 
to e n  on this side than the other. Thus, for example, we have found that attempts to get 
faster convergence by extrapolating the weight vector from the sampled into the unsampled 
region may overestimate the weights there, so that the region well sampled at stage n is 
missed altogether at stage n + 1. Convergence is then irregular and awkward, with the latest 
weights sometimes needing to be discarded and a return made to earlier ones. (We note, 
however, that linear extrapolations are relatively safe in this regard and have been used 
successfully, in conjunction with various ad hoc constrain? [lo, 11,25,28].) 

At first glance it would appear from figure 1 that convergence up to E = -120 
has occurred by the loth iteration, and convergence over the entire range by the 20th. 
Closer inspection, however (see the inset to figure I), shows that this convergence is not 
complete, and that fluctuations in the weights persist. These fluctuations signal the need for 
an improved algorithm. 

2.3. Stabilizing the algorithm: a prior on ?he weights 

The Buctuations in the macrostate weights reflect the fact that ihe algorithm (2.156) is acutely 
vulnerable to sampling error. As it stands, this algorithm enjoins us to update the weights 
by amounts controlled entirely by the histogram of visited states, with no account taken 
of the confidence levels associated with the existing weights. A recent study [lo] offers 
an ad hoc refinement of this strategy which uses the histograms of all previous iterations, 
each contributing to an extent inversely dependent on the size of local fluctuations. Here 
we attempt to build on the rather more rigorous framework provided by (2.9). To exploit 
it we need firstly to extend the scope of the processed data utilized in the weight update 
procedure, so as to incorporate information about these confidence levels; and secondly to 
allow for a ’prior’ on weights that propagates this information through the update procedure. 

To define confidence levels associated with the weights we proceed as follows. The 
macrostate counts contributing to each histogram 6”) are subdivided to define sub- 
histograms C(”,m) (m = 1.2. . . kf) each comprising Nb counts (so that M x Nb = N,). 
Jackknife estimators [29] of revised weights follow by application of (2.15b) in the form 

where tfcn.’”) comprises the data pooled from all the M histograms except the mth. The 
mean and standard deviation of the set $+‘.m), ( m  = 1,2,  . . . M) provide an estimator for 
the revised weight (of macrostate i ) ,  and its uncertainty given the observations made at stage 
n alone. We denote these quantities by fiy) and C y ) ,  respectively. Then the processed 
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data emerging from stage n can be packaged as 
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z)(") - $"+U &@+I) 

and the likelihood function featuring in'(2.9) assumes the form 

(2.18) 

(2.19) 

where B is a multi-variate Gaussian dishbution (but with co-variance terms suppressed). 
This refinement of the likelihood function requires a correspondingly more careful 

treatment of the other functions appearing in (2.9). Specifically, we shall assume that 
the prior (on the right-hand side of this equation), which encodes convictions about q* 
before the observations made at level n, can itself be parameaiized in Gaussian form 

1 P(z)"))I.*) c( P(.*lD(")) = G [.* - . ..("+I) , ,+.(n+i) 

p(71'lj3"). . .z)(=-l) ) c( G [17* - 17 (n), &] (2.20) 

with a corresponding form (parametrized by q("+" and dn+') ) for the posterior function 
(the left-hand side of equation (2.9)). 

With these identifications, and appealing to (2.19) we find the update equations 

and 

(2.21a) 

(2.21b) 

The current confidence levels associated with the weights now moderate the extent to 
which they are altered to reflect the newly gathered data. Thus, if the level-n weights are 
known only very imprecisely, the algorithm assigns the level+ + 1) weights on the basis of 
the information gathered at level n alone (q?+l) Y e?'); on the other hand, to the extent 
that the level-n weights are precisely known, the change at update is small (ql"f" Y ). 

and operate the convention that U?' =~oo until n values are reached such that C,"'" # 0. 
We also found that it is necessary to locally average the variable 3; because, otherwise, 
the sampling error in 6:' reintroduces noise in q,""). This problem arises because of the 
neglect of co-variance terms in (2.19). 

Figure 2 shows the algorithm at work, on the same task as that used to test the simple 
update algorithm (figure 1). The choices n, = 50, M = 6 for.the refined algorithm ensure 
the same overall number of observations as that used in the test of the simple algorithm. 
The key difference between the two schemes is apparent from a comparison of the insets in 
the two figures: one can see that the persistent weight fluctuations characterizing the simple 
algorithm are damped out by the refined algorithm. This is a reflection of the additional 
stability conferred by folding in the confidence levels in existing weights, through the use 
of the prior. Notwithstanding this advance, comparison of the main portions of the two 
figures shows that the revised algorithm does nothing to improve the speed at which the 
sampling progresses into the regime of macrostates with low Boltzmann weight. 

2.4. Improving convergence: the transition probabilig method 

It is apparent that the major problem with the visited states method of evolving the multi- 
canonical distribution is that it is slow to sample from (and thus give information about) 
regions remote from the dominant, equilibrium, macrostate. It is possible to do better by 

To bootstrap the algorithm it is necessq  to make the assignments qj') = 0 and U!')  = 00, 
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-512 -384 -256 -1 28 0 
energy E 

Figure 2. The results of iterations 1-20 for the visited states algorithm with mean value 
estimator, using a prior on weights (with n, = 50 and M = 6).  The inset shows detail in a 
restricted range of energies, revealing the improved convergence of the refined algorithm (2.21a). 
(2.21b). (The model parameters are JI~ defined in figure 1.)  

extrapolation (cf the discussion in section 2.2) to states as yet unvisited. Here, however, 
we explore an alternative scheme, which allows us to begin to gather information about 
all parts of the macrostate spacc immediately. In this scheme (to be referred to as the 
transition probability (TP) method) the system is prepared in a microstate of intrinsically 
low probability, such as the ground state. The system is allowed to evolve and the transitions 
between macrostates are monitored. Inferences about the macrostate probabilities are then 
made on the basis of the record of tramitions rather than the record of visited statu. To 
our knowledge this method is new (it is not to be confused with Bennett's acceptance 
ratio method [30]), although very recent work by Kerler et nl [31] also recognises that TP 
information forms a fruitful basis for inferences about the sampling distribution. 

To explore the basis of the method we must examine the factors controlling the 
macrostate transition probability matrix. Denote by p$"(t) = P(i -+ j [ i ,p (" ) ) ( t )  the 
transition probability from macrostate i to macrostate j at time t (measured from the 
beginning of the nth, sampling stage), in a process sampling from an ensemble with 
macrostate probabilities p(") (macrostate weights @)). We may write 

p/;'(t) = C C P ( r l i , p ' " ' ) ( t ) p ; : '  (2.22) 
rei sEj 

where p:) is the transition matrix for the microstates, at stage n. We consider the 
implications of this equation in the regime in which the probability distribution of microstates 
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for a given mcrostute can be approximated by its stationary limiting form, which is of the 
Boltzmann form independent of the weights: 

G R Smith and A D Bruce 

~ ( r l i , p ( n ) ) ( t )  N p(rl i ,pc)  = 4 = e-p[E,-fil r E i . (2.23) 

We shall return to consider the validity of this approximation. Accepting it for the moment, 
we find that the macrostate transition matrix is itself then stationary, and satisfies 

Pi 

(2.24) 

where the first step makes use of the detailed balance condition which the microstate 
transition probability matrix satisfies, by construction: 

(2.25) 

Equation (2.24) shows that the macrostate transition probability matrix satisfies its own 
detailed balance condition, and, to the extent that the approximation (2.23) holds, the 
eigenvector (of unit eigenvalue) of its tiaspose gives the macrostate probability vector p'"' 
associated with the weights $'). An estimate of the transition matrix (based upon a transition 
count) thus provides an alternative estimator $(') of the macrostate probabilities p("). 

The utility of this estimator must reflect the reliability of the approximation made 
in (2.23). The assumption here is, effectively, that the simulation allows a 'local' 
equilibrium to establish itself within the currently sampled macrostate. To the extent 
that the macroscopic variables (the macrostate labels) are the slowest to evolve, one may 
expect this approximation to be reasonable, and to improve with the approach to the multi- 
canonical limit where the Mc dynamics is more diffusive, less directional, and there is more 
time for relaxation to a local equilibrium. In contrast, the use of visited states estimators 
(like equation (2.1%)) rests on assumptions (multinomial distribution of counts, each bin 
count independent of the others) which become less reliable as the multi-canonical limit is 
approached. 

Let us turn to examine how well the method works in practice, besinning with an outline 
of some of the implementation details. The system is initialized in a chosen microstate 
associated with a macrostate remote from equilibrium. At each subsequent MC step we 
record in an array Cg' the transition performed between the macrostate i before the step 
and the macrostate j after it. Rejected trial mova  and accepted moves that do not change 
the macrostate are recorded, alike, in the diagonal elements Cj;"'. Typically (we shall give 
examples below) the process is repeated, releasing the system from some other location 
in macrostate space. Then the entire procedure is repeated until the may of recorded 
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transitions is reasonably full. The array C(”) is deemed ‘full’ when C$:, + Cj$,; > n, for 
all i (so that n, plays a role similar to that of n, in the vs method). 

An estimator for the elements of the transition matrix then follows from the recorded 
transitions, on the basis of a calculation similar to that underlying equation (2.15a) [32]: 

(2.26) 

The corresponding estimator for the sampling probability, $@), follows from the 
eigenvector of j$). Typically. the transition matrix is tridiagonal and it is easy to find 
p(”) using (2.24): we neglect normalization initially and take Vi;?’ = 1 (where i = 1 labels 
the release state). Then we use i;j:l = $‘ ) / j~~ , /&) , , i  to generate all the other elements 
successively, and finally impose zi = 1. To prevent the buildup of rounding errors 
we found it essential that the sequence of probabilities thus generated is increasing; this 
aim is realized by iterating from the release state@), which are chosen because of their 
low Boltzmann weight. This estimator of p(”) is used to update the macrostate weights, 
according to the simple updating scheme, equation (2.216). (The algorithm (2.21a), (2.216) 
is of advantage only in the context of weight refinement, near the multi-canonical limit, 
where, as we shall see the VS method is probably preferable.) 

Figure 3 shows the results of this procedure applied to the energy macrostates of an 
king model. In this case, the simulations were initiated (successively) from the ground 

120.0 , I 

100.0 
- 
v 
C 

e 80.0 

3 
3 
0 60.0 
a3 
m z 0 40.0 
E 

8 
Q 

Y 

20.0 

0.0 
-512 -384 -256 -1 28 0 

energy E 
Figure 3. Evolution of the weighs of energy mcmstates using the transition probability method 
(equations (2.26). (2.24), and (2 .2la) .  (2.21b)). for iterations 1-20. (The model parameters are 
as defined in figure 1.) 
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8 c 40.0 
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iteration number n 

Figure 4. The evolution of the weight q(") for the E 5 0 energy macrostate M a function of 
iteration number. for the visited states method (vs) and the transition probability method ('IQ). 
In each case the ordinate shows the d@rence qx - q(") where qr is defined by the limiting 
behaviour of the refined vs algorithm (2.21a). (The model parameten are 3s defined in figure 1.) 

state (with energy E = -2N) and from a microstate chosen randomly from the infinite- 
temperature ensemble (with E 2: 0). The parameter n, was set to 600, so that each iteration 
took about as long as its equivalent in our tests of the visited states method. To keep the 
matrix 5:) tridiagonal, we binned the energy macrostates so that the width of each bin 
was A E  = 8. Figure 3 shows that, in contrast to the visited states method (cf figure 2), 
the transition probability scheme yields significant information about the whole space of 
macrostates already from the earliest iterations. This comparison is made more explicitly 
in figure 4 which shows the weights assigned by the two schemes to the E = 0 macrostate, 
as a function of iteration number. The TP method clearly wins over the course of the early 
iterations, converging rapidly to a good approximation to the multicanonical limit. (We 
shall return to discuss the behaviour over the later iterations.) 

We have also applied the TP method to the magnetization macrostates of an N = 322 
king model at and below its critical temperature. This problem provides a simple example 
of the important case of a canonically distributed macroscopic variable with mo distinct 
peaks. This is the situation that has to be confronted whenever we consider a system with a 
phase boundary, separating phases distinguished by different values of that (or some other) 
macroscopic variable. To deal with this kind of problem we need to extend the spectrum 
of the initial states used to launch a simulation sequence, to ensure that the entire space 
of macrostates is sampled effectively. In this case we have used three launch states. The 
ordered microstates (with M = &MS where M, = N is the saturation magnetization) define 
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Figure S. The weight of magnetization macrostates for a 'D Ising model with 6 = pc = 0.4406, 
and N = 32'. inferred from one itention of TP, onGteration of vs andnaive finite size scaling 
of rhe limiting weights for the N = 162 system. The full c w e  shows the muhi-cmo?icnl limit 
mablished from an extended vs procedure. 

two of these states; the third is a microstate chosen randomly from the set associated with 
the M = 0 macrostate. Using these three initial states the TP algorithm yields a sequence of 
weights which cover the entire macrostate space and which converge to a practically usable 
approximation to the multi-canonical limit on the first iteration (figure 5 ) ,  in contrast to 
the result of a VS run of the same length (also shown in figure 5) .  The faster conver, aence 
compared with the application to energy macrostates reflects differences in the macrostate TP 
matrix in the two cases. In the case of magnetization macrostates the matrix pij is naturally 
tridiagonal. For energy macrostates it is tridiagonal only if (as we have chosen to do) the 
energy is blocked (coarse-grained). Whiie preserving the simplicity of a tridiagonal matrix, 
the blocking compromises the approximation underlying equation (2.23), which presupposes 
that the degrees of freedom within each 'macrostate' (which now include the energy) relax 
on a faster time-scale than that characterizing the transitions between macrostates. In fact, 
it can be shown that fewer transitions occur in the direction (through macrostate space) in 
which p") is increasing (and more occur in the opposite direction) than would occur if 
local equilibrium were established within each bin. As a result, the eigenvector estimator 
continually underestimates the change in weights required. 

These two examples show that a few iterations of the TP method can provide a good 
approximation to the ideal multi-canonical weights, over any desired range of macrostate 
space. For many purposes the approximation may be sufficiently good that no further 
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refinement is necessary. However, our studies suggest that the limiting weights emerging 
from TP may be slightly biased with respect to the multi-canonical ideal. The bias reflects 
the fact that (2.23) is not fully satisfied. Elsewhere [23,33] we have shown that this problem 
disappears (the local equilibrium condition (2.23) is automatically satisfied) in the multi- 
canonical limit, provided the launch macrostates are chosen randomly from the macrostate 
space under investigation (and that the Markov chain generated from each launch state has 
the same length). An alternative procedure, applicable in the present context, would be 
to enforce (2.23) by following each macrostate transition with a sequence of spin-updates 
constrained to preserve the macrostate, thus establishing local equilibrium before the next 
macrostate transition is attempted. Of course, doing this reduces the TP method's speed 
advantage over the vs method and for the final stages of weight-refinement, where the 
weights change only a little between iterations, it may still be more efficient to use vs. 

3. Utilizing the sampling distribution 

3.1. Energy weighting: freeenergy estimation 

As we have already noted (and shall shortly explore) standard Boltzmann sampling methods 
do not provide immediate access to the free energy. The task of devising appropriate 
extensions of the standard techniques, to deal with this problem, has attracted continuing 
attention over the years: many different schemes have emerged. The most widely practiced 
involve integration of the canonically averaged energy along some path connecting the 
system of interest to some reference system. Reviews are to  be found in [2,9,33] (which 
includes an extended bibliography). Here we shall focus on the utility of the multi-canonical 
distribution, and compare it with integration methods (IM). 

The task of determining the free energy defined by 

(3.1) 
1 ~ ( 0 )  -- In [z'(p)] 
B 

entails finding a satisfactory way of estimating, by MC sampling, the partition function sum 
(equation (2.2)) 

Z'@) = Er$+ with 4, =e-@', . (3.2) 

We estimate the sum by realizing a set of N, microstates indexed by t = 1,Z.. .A', 
7 

drawn from the general distribution (equation (2.5)) 

where f i  may be different from 0. and the weights refer to energy macrostates. Then 

and 

1 N. 1 Q T  

(N, F E),,, = ZEZ 

(3.3) 

(3.44 

(3.4b) 

where we adopt the notation 

(3.5) 
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and RT = E, is the total number of microstates. Combining equations (3.4~7) and (3.4b) 
to eliminate the unknown normalization constant associated with the sampling distribution 
(3.31, we find that the partition function may be written as 

(3.6) 

It follows that we may construct a ratio estimator for the partition function, Z C ( ~ )  2 
with 

where C,(b, q) denotes the number of occurrences 'of energy macrostate i amongst the 
Ne observations drawn from the sampling distribution (3.3). (We note that the right-hand 
side of (3.7) does not provide an unbiased estimator of Zc(p) [34].  However, the bias is 
O(l/N,) and therefore small on the scale of the sampling error; it can be suppressed by the 
use of 'double-jackknife bias-corrected estimators' [29].) Now, irrespective of the sampling 
process (that is, irrespective of the values assigned to the weights q), 

~;(b,q)eb'*-qr - Q ( E ~ )  (3.8~~) 

ci(j,q) e@+)'r-ql - e+"Q(Ei) - p c ( ~ ,  ~ i ) .  

and 

(3.8b) 

Thus, the sum featuring in~the denominator of (3.7) is dominated by energies in the vicinity 
of the maximum Em of the density of states function Q(E) (equation (2.4a)), while the sum 
in the numerator is dominated by energies close to I?(p), the most probable energy in the 
canonical distribution (2.46). While Boltzmann sampling can provide a reliable estimate 
of the latter sum (it samples most effectively in the region E R e )  it will provide an 
unreliable estimate of the former (it will sample hardly at all the region E 2: Em). This 
is why Boltzmann sampling methods are inappropriate for this problem. In contrast, the 
multi-canonical distribution extends over all ranges of energy, allowing both sums to be 
estimated reliably, for any p.  The multi-canonical distribution evolved for one temperature 
may thus be used to determine the free-energy (and, indeed all other properties that can 
be written as averages of an operator over energy macrostates) at any other temperature, 
constituting a powerful extension of the histogram reweighting technique [14]. 

This is not to say that the multi-canonical distribution (of whatever temperature) is 
optimal for the free-energy importance sampling process., We shall return to this point 
briefly in section 4; here we need to note only that the results of the estimation process are 
rather insensitive to the details of the sampling distribution, provided only that its samples 
effectively in the two regions dominating the sums featuring in (3.7); thus, in practice, we 
need only a set of weights q which approximate the multi-canonical ideal q A  to within 
terms of order unity. 

To benchmark the utility of the multi-canonical approach we again appeal to the 
zero-field ZD king model, where exact results for the free energy exist not only in the 
thermodynamic limit [35] but also for systems of finite size [36].  The MCMC process is 
divided into two parts: an initial stage which determines an acceptable approximation to 
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the multi-canonical set; and a production stage in which the distribution is sampled to yield 
the two sums featuring in the estimator ?(B)  (equation (3.7)) and thence the freeenergy 
density estimator 

G R Smith and A D B r k e  

We applied this method to an N = 3Z2 king system. The multi-canonical weights 
were determined by using the the transition probability method of section 2.4, on a system 
of inverse temperature =- 0.55. The production runs entailed some lo7 lattice sweeps, 
generated in ten 'blocks' with jackknife blocking used to estimate errors for all results. The 
results are shown in figure 6,where they are compared with exact results (for the N = 3Z2 
system) constructed from [36]. To make the accuracy obtained clearly visible, we have 
plotted the difSerence Af between the simulation and exact results. Over the entire range. 
the (lu) error bars are smaller than 0.0002; the largest fractional error is 0.01%. 

For comparison, we have also determined the free energy, for the same system, using one 
of the standard integration methods (IM) which exploit the fact that free-energy derivatives 
are related to canonical averages that are accessible to conventional Boltzmann sampling. 
Thus, in panicular, the free-energy can be determined by integrating the measured energy 
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Figure 6. Comparison of thermodynamic integrathn OM) and multi-canonical (MCMC) 
cdculations of the free eneEy density of the N = 322 king model, displayed JS dflerences 
from rhe ex3ct finite-size results 1361. 



Multi-canonical Monte Carlo method 6639~ 

with respect to inversetemperature: 

(3.10) 

with an appropriate choice of reference temperature = 0, so that 
p r f ( p r )  = -In 2. We made measurements of using Boltzmann sampling simulations 
for 11 evenly spaced values of inverse temperature between 0.05 and 0.55, with IO6 lattice 
 sweeps^ at each temperature, .entailing a total compute time comparable with that of the 
MCMC calculation. An interpolating spline was fitted to the data points and the integral in 
equation (3.10) evaluated numerically. 

The results are also shown in figure 6. At small j3, MCMC and IM methods yield 
comparable accuracy. However, at larger ,6 the IM results deviate significantly from the 
exactly established values. This is not a random error: the error bars, which represent the 
measured spread of the estimator, obtained by jackknife .blocking; are approximately the 
same size as those on the,muiti-canonical data; rather,~it is a systematic error which can be 
traced to the phase transition that lies on the path of integration (at pc = 0.44.. . , in the 
infiniteN limit). In this region the variation of with B is too rapid (the heat capacity 
is logarithmically divergent at ,6, in the thermodynamic limit) to be reflected adequately in 
the data points. To reduce this error we would have had to space the integration points 
differently, clustering them around the phase transition point. By contrast no such special 
care is required in the multi-canonical method. In the vicinity of the phase transition the 
error bars get larger because of critical fluctuations, but they still contain the line Af = 0 
and are thus tmstworthy confidence measures, in contrast to those associated with the 
thermodynamic integration data. 

3.2. Magnetization weighting: from scaling to saturation 

As our second application of multi-canonical methods we turn to consider the canonical 
distribution of magnetization macrostates in a critical king model. 

It is well established [37, 381 that, for a critical system whose linear dimension L is 
large compared to microscopic lengths, the canonical probability density function (PDF) of 
the magnetization m e L-dM has the universal scaling form 

p(m)dm rr p’(x) dx with x m / m ,  (3.11) 
where 

m, ~ ( m 2 ) l / 2  L-d/(l+S) (3.12) 
with S the equation of state exponent. The function p’(x) is believed to be universal, 
in the sense that it describes the distribution of the order parameter in all systems of the 
same universality class (and subject to the same boundary conditions). Thus, for example, 
there is good reason to believe that the distribution of the magnetization in a critical Ising 
model has the same form as the distribution of the density in  a critical fluid of the same 
spatial dimension [201. This correspondence has provided a fruitful basis for the accurate 
determination of critical points in simulations of fluids [13]. 

Although renormalization-group calculations [38-40] yield some understanding of the 
structure of the universal scaling function p * ( x ) ,  most of what is known to date rests on 
simulations probing the region accessible to conventional Boltzmann sampling. Here we use 
multi-canonical methods to explore the form of p* (x )  beyond this region. The motivation 
for this study is a recent conjecture [21,221 for the large-.x behaviour of p’(x): 

(3.13~~) 

1 6  
Bf(B) = Prf(Pr) f y / EC(B’)dB’ 

h 
In this case we chose 

4 -o&’ PYX)  = p,x e 
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with 
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(3.13b) 

while pm and a, are universal constants (implicit in the form of p'). The structure of the 
exponential (equation (3.13~)) is suggested by rigorous results for the 2D king model [41] 
and is consistent with MC studies of the king universality class 1191. The value assigned 
to the exponent of the power-law prefactor (equation (3.136)) has been shown [22] to 
lead to a successful account of the value of the Privman-Fisher universal amplitude [42], 
characterizing the free energy of a finite-sized system at its critical point. This form of 
prefactor also emerges from a recently developed theory [21] which argues that the critical 
order parameter distribution may be related to the stable distributions of probability theory. 
However, this theory also suggests the existence of additional non-universal contxibutions 
to the order parameter distribution, falling off as a power at large x and thus asymptotically 
dominant. 

To explore these issues we have performed a multi-canonical study of magnetization 
macrostates in the critical 2~ king model (of sizes L = 32 and L = 64), extending the 
region 'sampled all the way to the saturation magnetization [MI = N = L2. To evolve an 
appropriate set of weights we used the TP method initially, with final refinements using vs. 
The final set of weights extend over a range 0 to 191 (for L = 64), manifesting a variation 
of some 83 decades in the magnetization PDF itself. 

The probability PO that the system will be found in (a particular) ground state, with 
the saturation magnetization, is directly measurable in this ensemble. It is easy to see from 
equation (2.3) (with FO = Eo = -2N) that this probability provides another route to the 
determination of the free energy through 

8 - 1  *=- 
2 

(3.14) 

The results which follow from the application of these equations are shown in table 1. 
The remarkable precision gives a measure of the accuracy with which the ground state 
probabilities have been measured. 

Table 1. The critical freesnergy density of the ZD Ising model obtained by direct measurement 
of the ground-state probability, using the multi-canonical ensemble in conjunction with 
equation (3.14). compared with exact results (quoted to five decimal places). 

Critiwl free energy density 

L MCMC Exact PSI 
32 -2.111 15(4) -2.11107 
64 -2.10999(2) -2.11001 

To test the ansatz (3.13a), (3.136) we plot, in figure 7(a), the function 

q * ( x )  = -ln [ X - ~ P * ( X ) ]  (3.15) 

with 6 = 15 (and thus @ = 7), appropriate in d = 2. In a region described by 
equations (3.13~) and (3.136) this function should be linear in the scaling variable x .  The 
figure shows that such a region does exist, at intermediate values of x ,  and that it extends 
to larger values of x for the larger system. This is indeed what one must expect: universal 
scaling behaviour requires the limit L + CO at fixed x ,  since only then are corrections to 
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F i e r e  7. (a) The function @ ( X )  -In[r-’p‘(x)] plotted against x I 6  obtained by sampling 
from the multi-canonical distribution established for L = 32 and L = 64. The data points in 
which the lines terminate are exact results deduced from [36]. (b)  The results of fitting the 
ansa12 (3.130) to the crirical magnetization PDF, over a series of windows of the scaling variable 
x for L = 32 and L = 64. The ordinate shows the ratio~of the best fit value of the exponent 
$, to the prediction (3.13b). The abscissa shows the value of the scaling variable locating the 
centre of the window used in each fit. 

scaling guaranteed to be negligible; the limit x -+ 00 ai  fixed L must eventually take us 
outside this regime. While we have no detailed understanding of the factors controlling the 
behaviour in this region, beyond the scaling limit, the results in figure 7(a) do not support 
the suggestion [21] that the asymptotic behaviour of the magnetization PDF is a power-law 
decay. If it were, then at large enough x we would expect that q * ( x )  - lnx, which would 
be concave (i.e. have a negative second derivative); the observed behaviour is convex. 

Figure 7(b) provides a more stringent test of the prefactor structure suggested in 
equations (3.13a), (3.13b). It shows the result of fitting the ansatz (3.13~) to the measured 
magnetization PDF over a series of windows of x-values. The results provide substantial 
support for the assignment (3.13b) f6r the prefactor exponent e. 

4. Conclusions 

In this paper we have explored both the techniques for generating multi-canonical 
distributions, and some of the applications of multi-canonical sampling. We divide our 
conclusions accordingly. 

The studies reported in section 2.3 take ns only a little way towards realizing the 
full Bayesian formulation of the MCMC programme set out in section 2.1. The algorithm 
defined by equations (2.21a) and (2.21b) allows one to propagate only a limited amount of 
the information gathered in earlier iterations; its pay-off-the suppression  of noise in the 
multicanonical distribution it delivers-has only marginal impact on the quality of averages 
formed by sampling from this distribution. However, we anticipate that the procedure will 
prove rather more valuable when the MCMC strategy is developed so as to allow physical 
quantities of interest to be computed directly from the multicanonical weights, rather than 
by further simulation within the multicanonical ensemble. 

The transition probability method described in section 2.4 is, we believe, of immediate 
practical utility. It provides an efficient way of obtaining a ‘good approximation to a 
multi-canonical set of weights, covering any targeted range of macrostate space. In some 
circumstances the weights that TP delivers may be quite adequate (cf section 3.1). In others 
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(cf section 3.2) one may wish only to use the TP weights to bootstrap some further weight- 
refinement process (such as the refined VS algorithm of section 2.3). In this respect TP is 
complementary to the finite-size-scaling (FSS) strategy in common use [5,12,18], where 
an initial set of weights is inferred on the basis of Boltzmann sampling measurements 
on a system small enough to allow the macrostate space to be fully explored. In some 
cases (homogeneous systems, such as the king model in the one phase region) an FSS 
bootstrap followed by visited-states refinement is a simple and effective procedure. But FSS 
of the weights is not always straightforward to implement (the ideal weights are not simply 
extensive either in a two-phase region, or at a critical point: cf figure 5); and sometimes 
not applicable at all (in the context of a spin glass [Ill). We have not yet addressed 
the spin-glass problem. But here we have demonstrated the capacity of TP to handle the 
critical point, and in further explorations of the method, to be described elsewhere [23], 
have applied it successfully to the determination of a multi-canonical sampling distribution 
bridging between two different solid phases. We note that the method may also be applied 
to determine the weights associated with the sub-ensembles that feature in the expanded 
ensemble techniques developed by Lyubartsev et al 171 and Marinari and Parisi [SI. 

As regards the applications of the multi-canonical distribution, we observe, first, that the 
multi-canonical distribution is surely not optimal as regards the estimation of the canonical 
averages that determine the free energy. This is intuitively clear from the fact that the 
macrostates that lie between the two energies that locate the dominant regions of numerator 
and denominator in equation (3.7) contribute hardly anything to either sum; their weight 
is of importance only because it controls the probability of the system tunnelling between 
these two regions. Thus there is no reason apriori to expect that a flat sampling distribution 
will be optimal for this problem or, indeed, for the estimation of any canonical average. The 
issue of what sampling distribution is optimal, for the estimation of a given average, was 
addressed in the earliest days of computer simulation [3], and has recently attracted renewed 
attention [27]. On the basis of our own investigations [33], we observe that although the 
multi-canonical distribution is not optimal for any ensemble average, the gains associated 
with the optimization process are marginal. The key point is that multi-canonical sampling 
is never bad in the way that Boltzmann sampling can be bad. Boltzmann sampling is bad for 
some observables (those which contain the averages of exponentials) because the fraction 
of the sampling weight that it puts in the region of macrostate space which dominates the 
ensemble average may be exponentially small. Multi-canonical sampling can never have 
this problem, because it puts an equal amount of weight in every region of macrostate space. 

Secondly, our study of the multi-canonical distribution for the magnetization 
(section 3.2) has demonstrated the remarkable precision with which the method may be 
used to determine probabilities with extremely small absolute values. This capacity, already 
exploited in studies of interfaces between coexisting phases [IS], has many interesting 
potential applications. 

However, it is in the context of the phase behaviour of condensed matter systems that the 
multi-canonical method seems set to have the most striking impact. The studies reported 
in section 3.1 show that multi-canonical sampling is at least as accurate as traditional 
integration methods in the measurement of absolute free energy values, and is much better 
able to deal with the problems arising from the occurrence of a phase transition in the space 
sampled. The advantages of the multi-canonical approach are sharpened when it comes 
to the task of determining the relative free energies of two phases-in effect. the generic 
problem of locating a phase boundary. Integration methods need to resort to doubletangent 
constructions; as shown in the seminal paper 151 multi-canonical methods allow the two 
phases to be sampled in the same simulation. Although further ingenuity will surely be 
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required to evolve the multi-canonical distributions appropriate to different types of phase 
boundary, the number of potential applications here is enormous. 
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